
Maratona de Programação da SBC 2020

This problem set is used in simultaneous contests:
Maratona de Programação da SBC 2020

Segunda Fecha Gran Premio de México 2020
Primera Fecha Gran Premio de Centroamérica 2020

Torneo Argentino de Programación 2020

November 14th, 2020

Editorial

This editorial was prepared by the following volunteers:

• Agust́ın Santiago Gutiérrez

• Fernando Fonseca Andrade Oliveira

• Naum Azeredo Fernandes Barreira

• Teodoro Freund

Promo:

v1.0

Maratona de Programação da SBC – ICPC – 2020 1

Problem A

Sticker Album
As in most expected value problems, it’s useful to name the expected value of the number of packets
one must buy to fill an album that has x empty slots left: let this value be Ex. We have E0 = 0, as it
is not necessary to buy any packet to fill a full album.

As the number of cards per packet is uniformly random, the probability of a packet containing any
number of cards between A and B is the same, 1

B−A+1 . To make the next expressions simpler, let’s
denote L = B −A+ 1.

If the album needs x more cards, after buying a packet, with probability 1
L the album will need

x−A cards, with the same probability it’s going to need x−A− 1, and so on. Therefore we can write
Ex as a function of other values of E:

Ex = 1 +
1

L
Ex−A +

1

L
Ex−A−1 + · · ·+ 1

L
Ex−B

Using the equation above to calculate E1, E2, · · · , EN allows us to solve the problem in O(N(B −
A)), which is too slow. To make it faster, we can use a sliding window of sums of B−A+1 consecutive
values of E to get the value of the right side sum quickly. Alternatively, we can also calculate prefix
sums of E to get the sum in constant time, but we need to be careful with double precision issues
when using this approach. Both approaches make the final solution work in O(N).

A detail is that A can be zero, and in this case in the equation above Ex would depend on itself.
This is not a big problem, because we can still solve the equation for Ex:

Ex = 1 +
1

L
Ex +

1

L
Ex−1 + · · ·+ 1

L
Ex−B

Ex =
L

L− 1

(
1 +

1

L
Ex−1 + · · ·+ 1

L
Ex−B

)

Maratona de Programação da SBC – ICPC – 2020 2

Problem B

Battleship
For this problem, it is enough to place each ship in the board, one by one, and check if each ship can
be placed according to the conditions in the statement.

At the start, we can represent an empty board by a 10x10 two-dimensional array filled with zeros,
indicating there are no occupied squares. Whenever a new ship is placed, we can use a for or while
loop to iterate over all squares that the ship occupies, and mark all of those squares in the matrix
with a 1, indicating that those squares are now full. If at any point we try to place a ship in a square
that was already full, or a square that is outside the 10x10 board, we report that the configuration is
not good. Otherwise, the configuration is good.

Maratona de Programação da SBC – ICPC – 2020 3

Problem C

Concatenating Teams
The key observation is to concentrate, within university A, on the triplets (x, x′, S) such that x = x′S
and both x and x′ are team names from university A.

Similarly, we can consider the triplets (z, z′, S) such that z′ = Sz and both z and z′ are team
names from university B.

A certain name X is not peculiar, exactly when there exists such a triplet (x, x′, S) for university
A and such (z, z′, S) for university B, both having the same S and such that X is one of the 4 different
teams involved in this pair of triplets.

One might think at first that there can be too many triplets to explicitly generate them all, but
this is not so: For each x for example, there is at most one triplet (x, x′, S) for each prefix of x, and
so the total number of triplets is at most the total number of characters in the input strings.

Hashing seems to be the easiest way to efficiently generate and group the triplets: Iterate all
prefixes of all the words in the first set. If a prefix of a word is found to be some other word from the
set (which can be efficiently checked by putting all hashes in a set/map), the remaining suffix (whose
hash can also be efficiently computed) is the S involved in the triplet. The same can be done for set
B, and then all triplets can be grouped by S and iterated. Once grouped, for each S such that at
least one triplet with S exist for each university, then all of the x, x′, z, z′ involved in any such triplet
can be marked as nonpeculiar. Those names remaining unmarked after all of this are precisely the
peculiar names.

Using a simple trie, all the triplets can be generated in the same time, but while x and x′ can be
stored explicitly, S will be computed as a pair of starting and ending indices i, j. To then group the
triplets having identical S from this representation is not quite simple.

There is that detail that, while there are O(input) different S, and they can be identified and
grouped by equality using hashing, the total sum of their lengths can be very big, so explicitly creating
a trie or similar with all of them can be too large.

This solution runs in a linear number of map operations.
By creating a suffix array / suffix tree of the words and working with it carefully, a similar fully

deterministic efficient solution can be written, although it is quite harder and longer than just using
hashing.

Maratona de Programação da SBC – ICPC – 2020 4

Problem D

Divisibility Dance
Since the only movements allowed are rotations of an entire circle, the final configuration must also be
some rotation of the initial pairing. To solve this problem, we need to answer two questions: which of
the rotations satisfy the sum condition, and in how many ways can we reach each of those valid final
configurations.

For the first question, it’s useful to notice that, if the pairwise sum is constant when summing
corresponding values of arrays A and B, then if going from position i to position i+ 1 the element in
A increases by 3, the element of B must decrease by 3. In other words, the difference array of array B
(the array D where Di = Bi+1 −Bi) is equal to the difference array of A with all elements negated.

Let’s take the difference array of A, DA, and the negative of the difference array of B, −DB. We
want to know for what rotations of DA it becomes equal to −DB. This is a classic string problem: we
can concatenate two copies of DA next to each other such that the N elements beginning at position i
in the concatenated array correspond to DA rotated i times, and then any string matching algorithm
can be used to determine in which positions −DB matches the concatenated array.

Finally, we must determine the number of ways to reach each valid rotation. Note that from one
configuration we can reach all rotations of that configuration except for the configuration itself, so
by symmetry all rotations that are not the initial one are equivalent and can be reached in the same
number of ways.

Let f(x, 0) the number of ways to rotate x times and finish in the starting configuration, and
f(x, 1) the number of ways to rotate x times and reach some other configuration (as the number of
ways is the same for all other configurations, it doesn’t matter which one). We can then write:

f(x, 0) = (N − 1)f(x− 1, 1)

f(x, 1) = f(x− 1, 0) + (N − 2)f(x− 1, 1)

In other words, the initial configuration can be reached by any of the N − 1 other ones, and each
of the other ones can be reached by the initial configuration and the other N − 2 configurations that
are not themselves.

This is a linear recurrence, so it can be solved by matrix exponentiation in O(logK).

Maratona de Programação da SBC – ICPC – 2020 5

Problem E

Party Company
For each party i, first use binary lifting to find what is the earliest supervisor Si of the owner Oi whose
age is still in the range [Li, Ri]. The owner of the party is always in the correct age range, so by the
property that all supervisors are at least as old as their subordinates, we know that all employees in
the chain between Oi and Si are also in the correct age range, so Si will be invited to the party i.

Since all partygoers are connected, we can consider any of them as the owner of the party and the
list of invited people will not change. Therefore, for every party i, consider that Si now is the owner
of that party. This makes the upper limit of age not relevant anymore, since we know Si’s manager is
too old and none of the subordinates of Si is too old.

Also, by the same reasoning we used to argue that all employees between Si and Oi are in the age
range, we can show that any employee that is a subordinate of Si and is inside the age range will be
invited, since all employees in the chain between them and Si will also be in the age range.

Therefore, the condition to be invited to a party can be rephrased as ”all subordinates of Si with
age at least Li are invited to the party i”, which is much simpler than the original conditions.

We can now finish the problem in several ways: one of them is to do a DFS on the tree and add
parties owned by the current employee in some structure that allows to query, in logarithmic time,
how many parties have a lower age limit that is lower than the age of the current employee (a binary
indexed tree is a good choice, for example). When the DFS leaves node v, we remove all parties owned
by v from this structure.

Maratona de Programação da SBC – ICPC – 2020 6

Problem F

Fastminton
It is enough to keep the current number of points and games for both players and simulate all of
the rules exactly as described in the statement. See the official solutions for more details on how to
implement all of the checks.

Maratona de Programação da SBC – ICPC – 2020 7

Problem G

Game Show!
Ricardo’s decision to continue or stop depends on only the value of the future reward that Ricardo can
get: if he knows that he can get a positive value of sbecs by continuing to play, he should continue;
otherwise, if he is going to lose sbecs, he should stop.

This suggests a dynamic programming approach to solve this problem, in which dpi is the best
value Ricardo can get if the last i boxes are still left in the game. Before each play, Ricardo can choose
to stop, which gets him no sbecs, or continue, which gets him the value of the current box and brings
him to the situation in which i− 1 boxes are left:

dpi = max (0, dpi−1 + valuei)

Our final answer is the best value Ricardo can get if all N boxes are left, plus his initial balance
of 100 sbecs, giving a final answer of 100 + dpN .

Maratona de Programação da SBC – ICPC – 2020 8

Problem H

SBC’s Hangar
First observe that the number of combinations that have a final weight in the interval [A,B] is the
number of combinations that have weight at most B, minus the number of combinations that have
weight at most A− 1. Therefore, it suffices to find an algorithm to calculate how many combinations
have weight at most W , for some W .

We can think of some backtracking solution, in which we would process the boxes in order, decide
if the current box is going to be included in the final combination or not, then for each of the two
possibilities recurse for the next boxes. This is too slow, as it has an exponential complexity of O(2N).

However, the boxes follow a very particular property, that for any two boxes, the larger box weighs
always at least twice as much as the smaller box. This implies that the weight of each box is greater
than the combined weight of all lighter boxes.

We can prove this by induction: the property holds for the two lightest boxes, since the smaller
box weighs at most half of the larger box. Now assume the property is true for the k-th smallest box.
For the k + 1-th smallest box, the weight of all boxes that weigh less is the weight of the k-th box,
plus the weight of all boxes lighter than the k-th box. As we know the combined weight of all boxes
lighter than the k-th box is lighter than the k-th box, the combined weight of all boxes lighter than
the k + 1-th box is less than two times the weight of box k, and therefore less than the weight of box
k + 1.

This property can be used to cut several possibilities of box selection in the backtracking approach.
Order the boxes from heaviest to lightest, and process the boxes in this order. Then:

• If the box is heavier than the maximum allowed remaining weight, it can never be in any
configuration, so we can simply ignore this box and move on.

• If the box is lighter than the maximum allowed remaining weight, we now have a choice: we can
include this box in the final group or not. However, note that if we don’t include this box, then
any combination of the remaining boxes is valid, because their combined weight is less than the
weight of this box and this box is lighter than the maximum. So if we choose to include this box
we continue processing the following boxes, and if we choose not to include this box, we can add(
n
k

)
to the answer, where n is the number of remaining boxes and k is the number of boxes that

still need to be included.

We now never recurse twice for any box, and in fact the algorithm above can be implemented with
a single loop. The complexity is O(N).

Maratona de Programação da SBC – ICPC – 2020 9

Problem I

Interactivity
The size of the minimal set of queries is the number of leaves of the tree. This can be proven by a
recursive approach (hard to understand proof):

A subtree is fully determined, meaning you can know all the values in this subtree with all queries,
if:

1) Every children of the root of this subtree is fully determined. So you can just sum the value of
the children to determine the value of the root.

2) The root value is determined by a query, and every children of the root of this subtree is fully
determined, except one, which can become fully determined if you knew the value of its root. So you
can subtract the value of the current root from the sum of values of the children that are determined,
thus calculating the value of the child’s root that is not fully determined.

It’s easy to see that, in the 2nd case, you can’t have more than one subtree that isn’t fully
determined, since it would only be possible to calculate the sum of its root’s values, which would
lead to multiple possible trees. Also it’s not optimal to have both root and children subtrees fully
determined, because the root value can be calculated in case you have the value of children’s roots.

Then you can use this definition going up from leaves until the root of the tree for the proof:
1) Leaves that were queried are fully determined, and leaves that were not queried are not.
2) The internal node that is a parent of a leaf that is not fully determined (and all other children

being fully determined, otherwise it can’t be uniquely determined), has to be determined by a query
to make its subtree fully determined or it is a subtree that is not fully determined but it can become
in case you can know the value of its root (which is part of the case 2 of the definition).

This means that for each leaf that is not queried, another node on the path from it to the root
must be queries to be able to fully determine the whole tree, and this query on the internal node
uniquely compensates a single leaf not being queried. So the size of the minimal set of queries must
be the number of leaves of the tree.

Using the definition we can formulate a dynamic programming solution, similar to Minimum Vertex
Cover, to calculate the amount of different minimal sets we can have. Let dp(u, k) be the total number
of different minimal sets of the subtree of the node u that needs k extra queries to become fully
determined. k can only be 0 or 1, since either the subtree is already fully determined or we need a
single extra query to compensate one leaf still not compensated (if we have more queries not being
compensated than this subtree can’t become fully determined, as described).

Leaf case: dp(u, 0) = 1, dp(u, 1) = 1
Internal node case:

Let S1 =
∏
dp(v, 0), where v are children nodes of u, which means the sum of all children’s

arrangements in case every single one is fully determined.
Let S2 =

∑
S1 × dp(v, 0)−1 × dp(v, 1), which means the sum of all possible arrangements where

only a single children’s subtree needs an extra query to become fully determined.

dp(u, 0) = S1 + S2
dp(u, 1) = S2

Explanation:

Maratona de Programação da SBC – ICPC – 2020 10

If k = 0, the subtree is fully determined, so the definition is directly applied: either all children’s
subtrees are fully determined (which is S1), or a single child’s subtree needs an extra query and we
have to do this query at u, since k = 0, (which is S2).

Else (k = 1) one child’s subtree must be needing an extra query (extra queries must come from
children since it means leaves that don’t have queries compensated) (which is S2).

The tricky case is to calculate S2 in modulo arithmetic. There can be a problem in case S1 is
multiple of the modulo (in case 109 + 7), so S1 would be zero, and S2 would also be zero, even when
the only term multiple of the modulo is the swapped term.

To avoid this you can preprocess the prefixes and suffixes of S1:
prei =

∏i−1
0 dp(v, 0)

sufi =
∏c
i+1 dp(v, 0)

and change the S2 expression to S2 =
∑c

i=0 prei−1 × dp(v, 1)× sufi+1.

Maratona de Programação da SBC – ICPC – 2020 11

Problem J

Collecting Data
This problem has many details, so it is very useful to eliminate some edge cases by treating them
separately. First, if all values are the same, then all pairs are the same point and we have exactly
one configuration. We can check if horizontal or vertical lines are possible by verifying if at least half
of the values are the same, and then we can ignore horizontal and vertical lines for the remainder of
the solution. Extra care must be taken with the case in which two values appear in the input with
frequency of N

2 each, which is another case better handled separately.
After these edge cases are handled, we can now make two simplifying assumptions: for every

configuration of points, there is exactly one line that goes through all points in this configuration, and
for every value of x there is exactly one value of y that is in this line, and vice-versa. This is very
useful because it helps avoid double-counting: we can now count for every possible line how many
configurations form that line, and we know that a configuration can only be counted once as it only
forms a single line.

Our strategy therefore is to form a list of candidate lines, and then for each line count in how many
ways we can pair coordinates so that the line goes through all points (possibly zero, if it is impossible
to make such a pairing).

The most straightforward strategy to choose candidate lines is to iterate through all ordered tuples
of 4 values (va, vb, vc, vd) chosen from the input, and take the line that goes through the points (va, vb)
and (vc, vd) as a candidate line. This will reach the right answer, but is too slow as there would
potentially be O(N4) lines generated by this process.

To speed this up, we need to use the fact that line doesn’t go through only two of the points,
but through all of them. One idea is to filter only lines that were generated many times in the above
process, which can work but is tricky to get right. A more direct approach is to note that since the line
goes through all points, it must also go through the point that uses the smallest of the coordinates v1.
Similarly, it must also go through a point that uses the smallest coordinate v2 that is greater than v1.
In this manner, it suffices to iterate only through tuples that contain both v1 and v2 in any position.
This guarantees that the number of tuples that will be analyzed is O(N2).

Some notes on the correctness of the above approach: note that the point that goes through v1
might be the same that goes through v2, but this is not a problem since in this case we can take the
remaining two values (v3, v4) to be any other point in the line. It is very important that we choose
v1 6= v2, as we need two distinct points to determine a line. Had we chosen v1 = v2, we could hit
a case in which both of the points that use v1 and v2 are in the same location, which would make
determining the line impossible. This is not a problem for the case v1 6= v2, as if the points (v1, va)
and (vb, v2) are in the same location, this implies the point (v1, v2) is also in the line, so we will add
this line as a candidate line later.

It remains to determine in how many ways each line can be formed. Here our second observation
comes into play: since we are ignoring horizontal and vertical lines, for each x there is exactly one
corresponding y in the line, and for each y there is exactly one corresponding x in the line. This
means that for every value it has potentially two other values it could be paired to (depending on
which coordinate it is being used as).

If we make a graph in which each node is a coordinate value and an edge means that two coordinates
can be paired to form a point, each node will have degree at most 2. A graph in which every node
has degree at most 2 is a union of paths and cycles. Paths can be paired greedily because the end
of the path has only one possibility, so it is possible to repeatedly pair the end of the path until a
contradiction is reached or the path is fully paired.

Cycles would be trickier, but for this particular graph we can show that all cycles are actually
very small. Indeed, if we write the line as y(x) = ax+ b, then a potential cycle of size 3 would imply
y(y(y(x))) = x, which is a linear equation and therefore has only one solution for x, which must be

Maratona de Programação da SBC – ICPC – 2020 12

the fixed point of the line (the point of the line such that y(x) = x). We still have to be careful with
edge cases when solving this linear equation, as it might involve a division by zero for two values of
a, which have to be analyzed separately. If a = 1 then all points are fixed points if b = 0, or there are
no fixed points if b 6= 0. If a = −1, then y(y(x)) = x for all x.

Therefore we can only have paths and fixed points for most lines, unless a = −1 in which case
there may also be cycles of length 2. For fixed points, it’s enough to check if the value appears in the
input an even or odd number of times; an odd number is impossible to pair and an even number can
be paired in exactly one way.

The cycles of length 2 are an interesting case, because they are the only configuration that can be
paired in more than one way: if both A and B appear in the input an equal number of times, then
we can choose how many points of the form (A,B) and how many points of the form (B,A) will be
formed. (Note that we treated cases that are a single 2-cycle separately earlier, so it is not a problem
to select all points to be in the same location here).

There are O(N2) candidate lines, and we can test each candidate line in O(N), so the overall
complexity is O(N3).

Maratona de Programação da SBC – ICPC – 2020 13

Problem K

Between Us
Describe the final partition as a set of N variables x1, x2, . . . , xN , such that for every i, xi = 0 if
student i is in the first group and xi = 1 if student i is in the second group.

Let the friends of student i be students A,B,C, Analyzing the condition ”the number of
friends of student i that are in the same group as i is an odd number”, we have two cases:

• Student i has an even number of friends in total

In this case, note that it does not matter for the condition in which group student i is in: either
both groups have an odd number of friends of i, or both groups have an even number of friends of
i. To have a valid partition, we want the first condition to hold (both groups have an odd number
of friends of i), which is equivalent to saying that an odd number of the variables xA, xB, xC , . . . is
equal to 1. This can be written mathematically as xA⊕xB ⊕xC ⊕ · · · = 1, where ⊕ denotes the XOR
operation (exclusive or).

• Student i has an odd number of friends in total

In this case, there is exactly one group with an odd number of friends of student i, so the position of
student i is uniquely determined by the position of all of their friends. We can write the desired position
for student i as xi = xA⊕ xB ⊕ xC ⊕ · · · , or after rearranging the terms, xi⊕ xA⊕ xB ⊕ xC ⊕ · · · = 0.

Therefore, for both cases, the condition can be expressed as an equation relating some of our
variables. The exclusive or operation is addition under modulo 2, so those are also linear equations,
and we can solve the system of linear equations using Gaussian elimination in O(N3). There is a valid
partition if and only if the system has at least one solution.

Maratona de Programação da SBC – ICPC – 2020 14

Problem L

Lavaspar
The brute-force idea would be:

Create an auxiliary matrix A to count the number of words that covers each position.
Create an auxiliary matrix B to count, for the current word being processed, which positions have

a matching for any anagram of it (this matrix has only zeroes and ones).
Then, for each word in the collection (O(N)), reset matrix B to zeroes (O(L × C)), generate all

anagrams of the word and (O(P !)), for each anagram, iterate in the original matrix for each initial
position (O(L× C)) and try to match to right, down and diagonal, settings 1 on every position that
has a match (O(P)). After all anagrams, sum the matrix B into A, and go to next word (O(L×C)).

This would lead to a O(N × (L× C + (P !× L× C × P))) = O(N × P !× P × L× C) complexity,
which is totally above the time limit.

To improve it, we can’t iterate on each anagram. We count the number of appearances of each
letter in the current word O(P) and we count the number of appearances of each letter in the matrix
for each interval of length P (O(L×C ×P)), going to right, left or diagonal, and for each interval we
can compare if the amount of each letter is the same or not (O(26)). In case the interval matches, we
have an anagram and we can update the auxiliary matrix B with ones (O(P)).

This would lead to a complexity of O(26×N × P 2 × L× C). Which may be enough to pass, but
we can optimize some details. We just need to use one of the optimizations below, but we can use all
of them together:

1) To update the auxiliary matrix B we can use the concept of sum in interval with prefix sums:
sum 1 at the start and −1 one positions after the end. We have to split horizontal, vertical and
diagonal tests to use this, though, but it would remove P from the complexity.

2) We could also improve the check. Instead of checking each one of the 26 letters for each interval,
we can create a letters matching variable that counts the amount of letters that have the same value
between the interval being checked and the word, and if it’s 26 we know that the interval matches
some anagram of the word. To calculate it, when we iterate over the desired interval, we add each
letter to the amount of that letter the interval has, then we can check if this value is equal to the
value in our word values (then we sum 1 to letters matching) or if it was equal before and it’s not
equal anymore (then we subtract 1). After going through every letter of the interval, letters matching
stores how many letters, from ’a’ to ’z’, have the same number of appearances between the interval
and the current word. This removes the 26 from the complexity.

3) Finally we can also use a sliding window to not have to go through every interval of length P
starting in every position of the matrix. For each line, start with an empty interval before the first
letter of the line. Expand the interval by adding the letters one by one of this line until we have an
interval of length P . Then we check if this interval is an anagram. Then add next letter and remove
the first letter, which makes the current interval have length P . Then we check again if they match and
repeat this adding/removing until we don’t have more letters to add. Then do the same for columns
and diagonals. This would remove P from the complexity.

Using all three optimizations we can go down to O(N × L× C) complexity.

Maratona de Programação da SBC – ICPC – 2020 15

Problem M

Machine Gun
The angle that a machine gun covers, casts on the x = 0 vertical axis a certain interval. If we cast
analogous angles from each initial enemy towards the left, each will cast its own interval over this line.

It can be verified that a machine gun kills an enemy precisely when the machine gun interval
intersects the enemy interval.

Thus, queries can be answered using an interval tree https://en.wikipedia.org/wiki/Interval_
tree, in O((N +Q+m) lgN) time, where m is the total number of killed enemies.

Alternatively, coordinate compression + persistent segment tree + sweep line + binary search can
be used: after changing the plane coordinates so that machine guns span 90 degrees angles aligned
with the coordinate axes, each query asks for the set of given points that are above and to the left of a
certain point. Using sum-queries over rectangles and binary searching to quickly find where the points
are, the full set of interesting points can be found. This solution has query complexity lg2N instead of
lgN , but it should probably be allowed to pass. The technique is more standard and well known, but
the implementation is probably trickier than that of an interval tree. Note that this solution is in fact
more general: it can handle queries of this kind with points anywhere at all in the plane, while the
interval tree solution makes use of the special structure that these queries have (all points are above
the y = x line, and all queries corners are below that diagonal).

The offline version of the problem would be quite easier: when all queries are known in advance,
they can be added as special points and then a single sweep line performed, keeping all seen enemies
in a c++ set so that when each query is found, the answer can be read from the set using a simple
lower bound operation.

However, this same idea can be made to work efficiently for the problem by implementing and
using a persistent balanced binary search tree, giving a third solution to the problem.

https://en.wikipedia.org/wiki/Interval_tree
https://en.wikipedia.org/wiki/Interval_tree

Maratona de Programação da SBC – ICPC – 2020 16

Problem N

Number Multiplication
This problem allows two solutions:

The first one may annoy you, since you don’t need to read the whole input to solve it.
Just take a fast factorization algorithm (let’s say Pollard’s rho), factorize every composite, put

every prime factor in a set and print them in order.
The complexity of this solution is something likeO(N∗ 4

√
max(composites)∗log(max(composites))).

Before moving forward, try to think the other solution. As a clue, the expected complexity is
O(E +

√
(max(composites))).

—————oo—————
The idea is to realize that we can do a simple O(

√
N) factorization algorithm going through all

primes smaller than
√
N just once.

We can keep an index so far, the largest number we have tested and repeat the following:

1. If so far is greater than
√
max(composites) then take all composites values different than 1,

and print them in order, they’re all primes. There can be repeated values, so be careful. Exit

2. Take any composite node connected to the smallest prime node not yet discovered (remember
they’re ordered)

3. Starting in so far check what’s the next number that divides that composite (it’ll be a prime).
Check if so far at any point becomes larger than

√
max(composites), if it does, go back to 1.

4. Once found, print it (it’s part of the answer), mark that node as discovered and divide every
composite node connected to that prime node as many times as possible (the edge actually has
that value). Increase so far and repeat.

Maratona de Programação da SBC – ICPC – 2020 17

Problem O

Venusian Shuttle
Each position in the shuttle is going to receive sunlight in some parts of the path and not receive any
sunlight in other parts. For now, we will not consider this detail and assume that a position receives
sunlight during the whole trip, and find the position that receives the least amount of sunlight.

Each line in the shuttle path can be described by the parameters L, the length, and α, the
orientation of the line. Someone sitting in a position x of the shuttle receives, during this line,
L cos (x+ α) units of sunlight. The total sunlight is therefore given by a sum of several cosines.

It is now very useful to know that a sum of several cosines with same frequency is still a cosine
multiplied by some constant, that is, we can write

A cos (x+ α) +B cos (x+ β) + · · · = C cos (x+ γ)

for some appropriate value of C and γ. There are several ways to reach this conclusion, including
geometrical approaches and using complex numbers. A direct algebraic way is to use the expression
for cosine of a sum:

cos (A+B) = cosA cosB − sinA sinB

This expression lets us rewrite A cos(x+ α) as B cosx+ C sinx, which makes adding two cosines
with different orientations easy as we can now separately add the coefficients for cosx and sinx. We
can also use the same expression in reverse to convert our final expression B cosx+ C sinx back into
a single cosine, and from there finding the minimum value of the expression is simple.

Remembering that not all positions receive sunlight in all parts of the path, we need to include in
our sum only the cosines from parts of the path in which a position x receives sunlight. We can note
that a line of the path provides sunlight to an interval of angles [−π

2 − α,
π
2 − α]. We can sort the

endpoints of those intervals and use a line sweep on them to consider for every interval of x values,
only the cosines that are relevant to those values of x.

Finally, we can note that as each sum only includes positive terms, the minimum for each interval
[x1, x2] must be in x1 or x2, so it suffices to compute the sum for both extremes of all intervals hit by
the line sweep.

