
ICPC Latin American Regional – 2020

Problem H – Halting Wolf

Senoof loves programming languages, and the only thing he loves more than using them is
creating new ones. His latest invention is the Wolf Programming Language, a very simple
language consisting of only two types of instructions. They are numbered consecutively and
written one under the other to make a program. Execution starts at instruction 1 and continues
until the program gets stuck.

The two types of instructions are:

• “K L1 L2 · · · LK” is a finite jump. Each value Li is an instruction number in the
program, while K indicates how many of them are specified. When a finite jump is
executed, one of the values Li is chosen, and the execution continues with instruction Li.
But that’s not all! The program changes the finite jump instruction so as to consume the
chosen value. If a program executes a finite jump without available values, it gets stuck
and halts.

• “* L” is an infinite jump. When it’s executed, the program continues with instruction
L, leaving the infinite jump instruction unmodified.

I know, Senoof is crazy, but it’s not that difficult. The picture below shows an example,
where current instruction is indicated with a ⊲ sign, and a consumed value is denoted with a
⊔ sign. The program in (a) starts execution at instruction 1, which is a finite jump. Suppose
that the second value is chosen, that is, execution continues with instruction 2 and this value
is consumed in instruction 1, which yields the situation shown in (b). Since instruction 2 is an
infinite jump to instruction 3, execution continues with this instruction, without consuming any
value from instruction 2. Now imagine that from instruction 3 execution jumps to instruction
4, then to instruction 1, and then again to instruction 1, consuming the corresponding values.
The situation at this point is shown in (c). As you can see the program gets stuck and halts,
because there are no available values for jumping.

⊲ 1: 2 1 2
2: * 3
3: 3 4 3 4
4: 2 1 1

1: 2 1 ⊔

⊲ 2: * 3
3: 3 4 3 4
4: 2 1 1

⊲ 1: 2 ⊔ ⊔

2: * 3
3: 3 ⊔ 3 4
4: 2 ⊔ 1

(a) (b) (c)

After some playing around, Senoof noticed that programs written in Wolf may run forever,
which does not imply that a given instruction can be executed infinitely many times. He kindly
just sent us the following example of a program that may run forever, although instruction 1
can be executed at most twice.

1: 2 1 2
2: * 4
3: 3 4 3 4
4: * 2

Given a program written in Wolf, you must determine the maximum number of times that
instruction 1 can be executed.

Input

The first line contains an integer N (1 ≤ N ≤ 100), the number of instructions the program
has. Each of the next N lines describes an instruction. A finite jump is represented with a
non-negative integer K followed by K integers L1, L2, . . . , LK (1 ≤ Li ≤ N for i = 1, 2, . . . ,K).
On the other hand, an infinite jump is described with the character “*” (asterisk) followed by
an integer L (1 ≤ L ≤ N). It is guaranteed that the total amount of instructions mentioned in
the finite jumps is at most 104.



ICPC Latin American Regional – 2020

Output

Output a single line with an integer indicating the maximum number of times instruction
1 can be executed, or the character “*” (asterisk) if instruction 1 can be executed infinitely
many times.

Sample input 1

4

2 1 2

* 3

3 4 3 4

2 1 1

Sample output 1

3

Sample input 2

4

2 1 2

* 4

3 4 3 4

* 2

Sample output 2

2

Sample input 3

4

2 2 3

2 3 4

1 1

1 1

Sample output 3

3

Sample input 4

3

* 3

* 1

* 2

Sample output 4

*

Sample input 5

1

0

Sample output 5

1


